Critical Nonlinear Phenomena for Kinetic Instabilities Near Threshold
نویسندگان
چکیده
A universal integral equation has been derived and solved for the nonlinear evolution of collective modes driven by kinetic wave particle resonances just above the threshold for instability. The dominant nonlinearity stems from the dynamics of resonant particles which can be treated perturbatively near the marginal state of the system. With a resonant particle source and classical relaxation processes included, the new equation allows the determination of conditions for a soft nonlinear regime, where the saturation level is proportional to the increment above threshold, or a hard nonlinear regime, where the saturation level is independent of the closeness to threshold. It has been found, both analytically and numerically, that in the hard regime the system exhibits explosive behavior and rapid oscillations of the mode amplitude. When the kinetic response is a requirement for the existence of the mode, this explosive behavior is accompanied by frequency chirping. The universality of the approach suggests that the theory applies to many types of resonant particle driven instabilities, and several specific cases, viz. energetic particle driven Alfvén wave excitation, the fishbone oscillation, and a collective mode in particle accelerators, are discussed. PACS numbers: 52.35.-g, 52.35.Mw, 52.40.Mj
منابع مشابه
Asymptotic forms and scaling properties of the relaxation time near threshold points in spinodal-type dynamical phase transitions.
We study critical properties of the relaxation time at a threshold point in switching processes between bistable states under change in external fields. In particular, we investigate the relaxation processes near the spinodal point of the infinitely long-range interaction model (the Husimi-Temperley model) by analyzing the scaling properties of the corresponding Fokker-Planck equation. We also ...
متن کاملStudy of Bunch Instabilities by the Nonlinear Vlasov-Fokker-Planck Equation
Instabilities of the bunch form in storage rings may be induced through the wake field arising from corrugations in the vacuum chamber, or from the wake and precursor fields due to coherent synchrotron radiation (CSR). For over forty years the linearized Vlasov equation has been applied to calculate the threshold in current for an instability, and the initial growth rate. Increasing interest in...
متن کاملGlobal gyrokinetic simulation of Tokamak edge pedestal instabilities.
Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-n kinetic ballooning mode (KBM) and an intermediate-n kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DIII-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while th...
متن کاملNonlinear Modeling of Kinetic Plasma
Many kinetic plasma instabilities, in quite di erent physical systems, share a genuinely similar mathematical structure near isolated phase-space islands. For this reason, dynamical features such as faster-than-exponential growth of the instability, as well as nonlinear frequency sweeping, are found to be universal. Numerical f methods, which follow the evolution of the (nonlinear) perturbed di...
متن کاملBubble dynamics and size distributions during focused ultrasound insonation.
The deposition of ultrasonic energy in tissue can cause tissue damage due to local heating. For pressures above a critical threshold, cavitation will occur, inducing a much larger thermal energy deposition in a local region. The present work develops a nonlinear bubble dynamics model to numerically investigate bubble oscillations and bubble-enhanced heating during focused ultrasound (HIFU) inso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997